An S4 class to represent the estimation of the Return Curve
rc_est.class(
data,
qmarg,
constrainedshape,
w,
p,
method,
q,
qalphas,
k,
constrained,
tol,
par_init,
interval,
rc
)dataA matrix containing the data on the original margins.
qmargA vector containing the marginal quantile used to fit the Generalised Pareto Distribution (GPD) for each variable. Default is rep(0.95, 2).
constrainedshapeLogical. If TRUE (Default), the estimated shape parameter of the Generalised Pareto Distribution (GPD) is constrained to strictly above -1.
wSequence of rays between 0 and 1. Default is seq(0, 1, by = 0.01).
methodString that indicates which method is used for the estimation of the angular dependence function. Must either be "hill", to use the Hill estimator Hill1975ReturnCurves, or "cl" to use the smooth estimator based on Bernstein-Bezier polynomials estimated by composite maximum likelihood.
pCurve survival probability. Must be p < 1-qp < 1-q and p < 1-q_p < 1-qalphas.
qMarginal quantile used for the min-projection variable T^1 at angle (t^1_ = t_ - u_ | t_ > u_), and/or Hill estimator Hill1975ReturnCurves. Default is 0.95.
qalphasA vector containing the marginal quantile used for the Heffernan and Tawn conditional extremes model HeffernanTawn2004ReturnCurves for each variable, if constrained = TRUE. Default set to rep(0.95, 2).
kPolynomial degree for the Bernstein-Bezier polynomials used for the estimation of the angular dependence function with the composite likelihood method MurphyBarltropetal2024ReturnCurves. Default set to 7.
constrainedLogical. If FALSE (default) no knowledge of the conditional extremes parameters is incorporated in the angular dependence function estimation.
tolConvergence tolerance for the composite maximum likelihood procedure. Default set to 0.0001.
par_initInitial values for the parameters of the Bernstein-Bezier polynomials used for estimation of the angular dependence function with the composite likelihood method MurphyBarltropetal2024ReturnCurves. Default set to a vector of 0 of length k-1.
intervalMaximum likelihood estimates ^1_x y and ^1_y x from the conditional extremes model if constrained = TRUE.
rcA matrix containing the estimates of the Return Curve.