data("Callcenter")
L <- 28
U <- fssa(Callcenter, L)
# FSSA Reconstruction step:
gr <- list(1, 2:3, 4:5, 6:7, 1:7)
Q <- freconstruct(U, gr)
plot(Q[[1]],
main = "Call Center Mean Component")
plot(Q[[2]],
main = "Call Center First Periodic Component")
#--------------- Multivariate FSSA Example on bivariate -----------------------------
## temperature curves and smoothed images of vegetation
if (FALSE) {
data("Montana")
L <- 45
U <- fssa(Montana, L)
# MFSSA Reconstruction step:
Q <- freconstruct(U = U, groups = list(1, 2, 3))
plotly_funts(Q[[1]],
main = c("Temperature Curves Mean", "NDVI Images Mean"),
color_palette = "RdYlGn",
xticklabels = list(
c("00:00", "06:00", "12:00", "18:00", "24:00"),
c("113.40\u00B0 W", "113.30\u00B0 W")
),
xticklocs = list(c(1, 6, 12, 18, 24), c(1, 33)),
yticklabels = list(NA, c("48.70\u00B0 N", "48.77\u00B0 N")),
yticklocs = list(NA, c(1, 33))
) # mean
plotly_funts(Q[[2]],
main = c("Temperature Curves Periodic", "NDVI Images Periodic"),
color_palette = "RdYlGn",
xticklabels = list(
c("00:00", "06:00", "12:00", "18:00", "24:00"),
c("113.40\u00B0 W", "113.30\u00B0 W")
),
xticklocs = list(c(1, 6, 12, 18, 24), c(1, 33)),
yticklabels = list(NA, c("48.70\u00B0 N", "48.77\u00B0 N")),
yticklocs = list(NA, c(1, 33))
) # periodic
plot(Q[[3]],
obs = 3,
main = c("Temperature Curves Trend", "NDVI Images Trend,")
) # trend
}
Run the code above in your browser using DataLab