Usage
params(
nb_rules,
nb_max_var_per_rule,
max_generations = 100,
max_fitness = 1,
nb_cooperators = 2,
influence_rules_initial_population = FALSE,
influence_evolving_ratio = 0.8,
ivars.nb_sets = 3,
ivars.nb_bits_vars = NA_integer_,
ivars.nb_bits_sets = NA_integer_,
ivars.nb_bits_pos = NA_integer_,
ovars.nb_sets = 3,
ovars.nb_bits_vars = NA_integer_,
ovars.nb_bits_sets = NA_integer_,
ovars.nb_bits_pos = NA_integer_,
rules.pop_size = 100,
rules.elite_size = 5,
rules.cx_prob = 0.5,
rules.mut_flip_genome = 0.5,
rules.mut_flip_bit = 0.025,
mfs.pop_size = 100,
mfs.elite_size = 5,
mfs.cx_prob = 0.5,
mfs.mut_flip_genome = 0.5,
mfs.mut_flip_bit = 0.025,
output_vars_defuzz_thresholds = NA,
metricsw.sensitivity = 1,
metricsw.specificity = 0.8,
metricsw.accuracy = 0,
metricsw.ppv = 0,
metricsw.rmse = 0,
metricsw.rrse = 0,
metricsw.rae = 0,
metricsw.mse = 0,
metricsw.distanceThreshold = 0,
metricsw.distanceMinThreshold = 0,
metricsw.nb_vars = 0,
metricsw.overLearn = 0,
metricsw.true_positives = 0,
metricsw.false_positives = 0,
metricsw.true_negatives = 0,
metricsw.false_negatives = 0,
features_weights = list()
)