Last chance! 50% off unlimited learning
Sale ends in
Given riem.knn
constructs
riem.knn(riemobj, k = 2, geometry = c("intrinsic", "extrinsic"))
a S3 "riemdata"
class for
the number of neighbors to find.
(case-insensitive) name of geometry; either geodesic ("intrinsic"
) or embedded ("extrinsic"
) geometry.
a named list containing
an
an
# NOT RUN {
#-------------------------------------------------------------------
# Example on Sphere : a dataset with three types
#
# * 10 perturbed data points near (1,0,0) on S^2 in R^3
# * 10 perturbed data points near (0,1,0) on S^2 in R^3
# * 10 perturbed data points near (0,0,1) on S^2 in R^3
#-------------------------------------------------------------------
## GENERATE DATA
mydata = list()
for (i in 1:10){
tgt = c(1, stats::rnorm(2, sd=0.1))
mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 11:20){
tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1))
mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 21:30){
tgt = c(stats::rnorm(2, sd=0.1), 1)
mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
myriem = wrap.sphere(mydata)
mylabs = rep(c(2,3,4), each=10)
## K-NN CONSTRUCTION WITH K=5 & K=10
knn1 = riem.knn(myriem, k=5)
knn2 = riem.knn(myriem, k=10)
## MDS FOR VISUALIZATION
embed2 = riem.mds(myriem, ndim=2)$embed
## VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
plot(embed2, pch=19, main="knn with k=4", col=mylabs)
for (i in 1:30){
for (j in 1:5){
lines(embed2[c(i,knn1$nn.idx[i,j]),])
}
}
plot(embed2, pch=19, main="knn with k=8", col=mylabs)
for (i in 1:30){
for (j in 1:10){
lines(embed2[c(i,knn2$nn.idx[i,j]),])
}
}
par(opar)
# }
Run the code above in your browser using DataLab