# NOT RUN {
#-------------------------------------------------------------------
# Example on Sphere : a dataset with two types
#
# class 1 : 20 perturbed data points near (1,0,0) on S^2 in R^3
# class 2 : 30 perturbed data points near (0,1,0) on S^2 in R^3
#-------------------------------------------------------------------
## GENERATE DATA
mydata1 = list()
mydata2 = list()
for (i in 1:20){
tgt = c(1, stats::rnorm(2, sd=0.1))
mydata1[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 1:20){
tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1))
mydata2[[i]] = tgt/sqrt(sum(tgt^2))
}
myriem1 = wrap.sphere(mydata1)
myriem2 = wrap.sphere(mydata2)
## PERFORM PERMUTATION TEST
# it is expected to return a very small number, but
# small number of 'nperm' may not give a reasonable p-value.
# }
# NOT RUN {
riem.test2wass(myriem1, myriem2, nperm=99, use.smooth=FALSE)
# }
# NOT RUN {
# }
# NOT RUN {
## CHECK WITH EMPIRICAL TYPE-1 ERROR
set.seed(777)
ntest = 1000
pvals = rep(0,ntest)
for (i in 1:ntest){
X = cbind(matrix(rnorm(30*2, sd=0.1),ncol=2), rep(1,30))
Y = cbind(matrix(rnorm(30*2, sd=0.1),ncol=2), rep(1,30))
Xnorm = X/sqrt(rowSums(X^2))
Ynorm = Y/sqrt(rowSums(Y^2))
Xriem = wrap.sphere(Xnorm)
Yriem = wrap.sphere(Ynorm)
pvals[i] = riem.test2wass(Xriem, Yriem, nperm=999)$p.value
print(paste0("iteration ",i,"/",ntest," complete.."))
}
emperr = round(sum((pvals <= 0.05))/ntest, 5)
print(paste0("* EMPIRICAL TYPE-1 ERROR=", emperr))
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab