Estimate the GRM using the joint or marginal maximum likelihood estimation
model_grm_eap
scores response vectors using the EAP method
model_grm_map
scores response vectors using the MAP method
model_grm_jmle
estimates the parameters using the
joint maximum likelihood estimation (JMLE) method
model_grm_mmle
estimates the parameters using the
marginal maximum likelihood estimation (MMLE) method
model_grm_eap(u, a, b, D = 1.702, priors = c(0, 1), bounds_t = c(-4,
4))model_grm_map(u, a, b, D = 1.702, priors = c(0, 1), bounds_t = c(-4,
4), iter = 30, conv = 0.001)
model_grm_dv_Pt(t, a, b, D)
model_grm_dv_Pa(t, a, b, D)
model_grm_dv_Pb(t, a, b, D)
model_grm_dv_jmle(u_ix, dvp)
model_grm_jmle(u, t = NA, a = NA, b = NA, D = 1.702, iter = 100,
nr_iter = 10, conv = 0.001, scale = c(0, 1), bounds_t = c(-4, 4),
bounds_a = c(0.01, 2.5), bounds_b = c(-4, 4), priors = list(t =
c(0, 1)), decay = 1, verbose = FALSE, true_params = NULL)
model_grm_dv_mmle(u_ix, quad, pdv)
model_grm_mmle(u, t = NA, a = NA, b = NA, d = NA, D = 1.702,
iter = 100, nr_iter = 10, conv = 0.001, bounds_t = c(-4, 4),
bounds_a = c(0.01, 2.5), bounds_b = c(-4, 4), priors = list(t =
c(0, 1)), decay = 1, quad_degree = "11", score_fn = c("eap",
"map"), verbose = FALSE, true_params = NULL)
model_grm_fitplot(u, t, a, b, D = 1.702, index = NULL,
intervals = seq(-3, 3, 0.5))
the observed response matrix, 2d matrix
discrimination parameters, 1d vector (fixed value) or NA (freely estimate)
difficulty parameters, 2d matrix (fixed value) or NA (freely estimate)
the scaling constant, 1.702 by default
a list of prior distributions
bounds of ability parameters
the maximum iterations
the convergence criterion for the -2 log-likelihood
ability parameters, 1d vector (fixed value) or NA (freely estimate)
the 3d indices
the derivatives of P
the maximum newton-raphson iterations, default=10
the scale of theta parameters
bounds of discrimination parameters
bounds of location parameters
decay rate
TRUE to print debuggin information
a list of true parameters for evaluating the estimation accuracy
the number of quadrature points
the scoring method: 'eap' or 'map'
the indices of items being plotted
intervals on the x-axis
model_grm_eap
returns theta estimates and standard errors in a list
model_grm_map
returns theta estimates in a list
model_grm_jmle
returns estimated t, a, b parameters in a list
model_grm_mmle
returns estimated t, a, b parameters in a list
model_grm_fitplot
returns a ggplot
object
# NOT RUN {
with(model_grm_gendata(10, 50, 3),
cbind(true=t, est=model_grm_eap(u, a, b)$t))
with(model_grm_gendata(10, 50, 3),
cbind(true=t, est=model_grm_map(u, a, b)$t))
# }
# NOT RUN {
# generate data
x <- model_grm_gendata(1000, 40, 3)
# free calibration, 40 iterations
y <- model_grm_jmle(x$u, true_params=x, iter=40, verbose=TRUE)
# }
# NOT RUN {
# generate data
x <- model_grm_gendata(1000, 40, 3)
# free estimation, 40 iterations
y <- model_grm_mmle(x$u, true_params=x, iter=40, verbose=TRUE)
# }
# NOT RUN {
with(model_grm_gendata(1000, 20, 3),
model_grm_fitplot(u, t, a, b, index=c(1, 3, 5)))
# }
Run the code above in your browser using DataLab