Common computations and operations for the 3PL model
model_3pl_prob(t, a, b, c, D = 1.702)model_3pl_info(t, a, b, c, D = 1.702)
model_3pl_lh(u, t, a, b, c, D = 1.702, log = FALSE)
model_3pl_rescale(t, a, b, c, scale = c("t", "b"), mean = 0, sd = 1)
model_3pl_gendata(n_p, n_i, t = NULL, a = NULL, b = NULL, c = NULL,
D = 1.702, t_dist = c(0, 1), a_dist = c(-0.1, 0.2), b_dist = c(0,
0.7), c_dist = c(5, 46), t_bounds = c(-3, 3), a_bounds = c(0.01,
2.5), b_bounds = c(-3, 3), c_bounds = c(0, 0.5), missing = NULL,
...)
model_3pl_plot(a, b, c, D = 1.702, type = c("prob", "info"),
total = FALSE, xaxis = seq(-4, 4, 0.1))
model_3pl_plot_loglh(u, a, b, c, D = 1.702, xaxis = seq(-4, 4, 0.1),
verbose = FALSE)
ability parameters, 1d vector
discrimination parameters, 1d vector
difficulty parameters, 1d vector
guessing parameters, 1d vector
the scaling constant, default=1.702
observed responses, 2d matrix
True to return log-likelihood
the scale, 't' for theta or 'b' for b-parameters
the mean of the new scale
the standard deviation of the new scale
the number of people to be generated
the number of items to be generated
parameters of the normal distribution used to generate t-parameters
parameters of the lognormal distribution used to generate a-parameters
parameters of the normal distribution used to generate b-parameters
parameters of the beta distribution used to generate c-parameters
bounds of the ability parameters
bounds of the discrimination parameters
bounds of the difficulty parameters
bounds of the guessing parameters
the proportion or number of missing responses
additional arguments
the type of plot: 'prob' for item characteristic curve (ICC) and 'info' for item information function curve (IIFC)
TRUE to sum values over items
the values of x-axis
TRUE to print rough maximum likelihood estimates
model_3pl_prob
returns the resulting probabilities in a matrix
model_3pl_info
returns the resulting information in a matrix
model_3pl_lh
returns the resulting likelihood in a matrix
model_3pl_rescale
returns t, a, b, c parameters on the new scale
model_3pl_gendata
returns the generated response matrix and parameters in a list
model_3pl_plot
returns a ggplot
object
model_3pl_plot_loglh
returns a ggplot
object
# NOT RUN {
with(model_3pl_gendata(10, 5), model_3pl_prob(t, a, b, c))
with(model_3pl_gendata(10, 5), model_3pl_info(t, a, b, c))
with(model_3pl_gendata(10, 5), model_3pl_lh(u, t, a, b, c))
model_3pl_gendata(10, 5)
model_3pl_gendata(10, 5, a=1, c=0, missing=.1)
with(model_3pl_gendata(10, 5), model_3pl_plot(a, b, c, type="prob"))
with(model_3pl_gendata(10, 5), model_3pl_plot(a, b, c, type="info", total=TRUE))
with(model_3pl_gendata(5, 50), model_3pl_plot_loglh(u, a, b, c))
# }
Run the code above in your browser using DataLab