#dataPath <- file.path("C:", "Documents and Settings", "c.maumet", "My Documents", "Programmation", "Sources", "SVN", "R package", "data")
#aDataset <- new("dataset", dataId="vantVeer_70", dataPath=dataPath)
#aDataset <- loadData(aDataset)
data('vV70genesDataset')
mySubsets <- new("geneSubsets", optionValues=c(1,2,4,8,16,32,64,70))
expeOfInterest <- new("assessment", dataset=vV70genes,
noFolds1stLayer=10,
noFolds2ndLayer=9,
classifierName="svm",
typeFoldCreation="original",
svmKernel="linear",
noOfRepeat=2,
featureSelectionOptions=mySubsets)
expeOfInterest <- findFinalClassifier(expeOfInterest)
# Return the whole object of class finalClassifier
finalClassifier <- getFinalClassifier(expeOfInterest)
# Svm model corresponding to a subset of size 4 (3rd size of subset)
getModels(finalClassifier)[[3]]$model
# Relevant genes for a subset of size 4 (3rd size of subset)
getModels(finalClassifier)[[3]]$modelFeatures
# Genes ordered according to their weight after performing the RFE up to 1 gene
getGenesFromBestToWorst(finalClassifier)
Run the code above in your browser using DataLab