# NOT RUN {
p_pvt <- c(3330, 3150, 3000, 2850, 2700, 2550, 2400)
Bo <- c(1.2511, 1.2353, 1.2222, 1.2122, 1.2022, 1.1922, 1.1822)
Rs <- c(510, 477, 450, 425, 401, 375, 352)
Bg <- c(0.00087, 0.00092, 0.00096, 0.00101, 0.00107, 0.00113, 0.00120)
cw <- 2e-6
Bwi <- 1.0
Bw <- Bwi * exp(cw * (p_pvt[1] - p_pvt))
Rv <- rep(0, length(p_pvt))
muo <- rep(0.5, length(p_pvt))
muw <- rep(0.25, length(p_pvt))
mug <- rep(0.02, length(p_pvt))
pvt_table <- data.frame(p = p_pvt, Bo = Bo, Rs = Rs, Rv = Rv, Bg = Bg,
Bw = Bw, muo = muo, mug = mug, muw = muw)
rel_perm <- as.data.frame(Rrelperm::kr2p_gl(SWCON = 0.2, SOIRG = 0.10,
SORG = 0.10, SGCON = 0.05, SGCRIT = 0.05, KRGCL = 0.3, KROGCG = 1,
NG = 0.93, NOG = 10, NP = 101))
colnames(rel_perm) <- c("Sg", "Sl", "Krg", "Krog")
p <- c(3330, 3150, 3000, 2850, 2700, 2550, 2400)
Gi <- rep(0, length.out = length(p))
wf <- c(1, 1, 1, 0, 1, 0, 1)
forecast_lst <- mbal_forecast_param_oil(input_unit = "Field",
output_unit = "Field", N = 1.37e8, m = 0.377, phi = 0.2, swi = 0.2, Gi = Gi,
pb = 3330, p = p, pvt = pvt_table, cf = 0, wf = wf, sorg = 0.2,
rel_perm = rel_perm)
dplyr::glimpse(forecast_lst)
# }
Run the code above in your browser using DataLab