Learn R Programming

Rmixmod (version 2.0.3)

mixmodCompositeModel: Create an instance of the [CompositeModel] class

Description

Define a list of heterogeneous model to test in MIXMOD.

Usage

mixmodCompositeModel(listModels = NULL, free.proportions = TRUE, equal.proportions = TRUE, variable.independency = NULL, component.independency = NULL)

Arguments

listModels
a list of characters containing a list of models. It is optional.
free.proportions
logical to include models with free proportions. Default is TRUE.
equal.proportions
logical to include models with equal proportions. Default is TRUE.
variable.independency
logical to include models where $[\varepsilon_k^j]$ is independent of the variable $j$. Optionnal.
component.independency
logical to include models where $[\varepsilon_k^j]$ is independent of the component $k$. Optionnal.

Value

an object of [CompositeModel] which contains some of the 40 heterogeneous Models:
Model Prop. Var. Comp. Volume
Shape Heterogeneous_p_E_L_B Equal TRUE TRUE
Equal Equal Heterogeneous_p_E_Lk_B TRUE
TRUE Free Equal Heterogeneous_p_E_L_Bk
TRUE TRUE Equal Free Heterogeneous_p_E_Lk_Bk
TRUE TRUE Free Free
Heterogeneous_p_Ek_L_B TRUE FALSE Equal
Equal Heterogeneous_p_Ek_Lk_B TRUE FALSE
Free Equal Heterogeneous_p_Ek_L_Bk TRUE
FALSE Equal Free Heterogeneous_p_Ek_Lk_Bk
TRUE FALSE Free Free Heterogeneous_p_Ej_L_B
FALSE TRUE Equal Equal
Heterogeneous_p_Ej_Lk_B FALSE TRUE Free
Equal Heterogeneous_p_Ej_L_Bk FALSE TRUE
Equal Free Heterogeneous_p_Ej_Lk_Bk FALSE
TRUE Free Free Heterogeneous_p_Ekj_L_B
FALSE FALSE Equal Equal Heterogeneous_p_Ekj_Lk_B
FALSE FALSE Free Equal
Heterogeneous_p_Ekj_L_Bk FALSE FALSE Equal
Free Heterogeneous_p_Ekj_Lk_Bk FALSE FALSE
Free Free Heterogeneous_p_Ekjh_L_B FALSE
FALSE Equal Equal Heterogeneous_p_Ekjh_Lk_B
FALSE FALSE Free Equal Heterogeneous_p_Ekjh_L_Bk
FALSE FALSE Equal Free
Heterogeneous_p_Ekjh_Lk_Bk FALSE FALSE Free
Free Heterogeneous_pk_E_L_B Free TRUE TRUE
Equal Equal Heterogeneous_pk_E_Lk_B TRUE
TRUE Free Equal Heterogeneous_pk_E_L_Bk
TRUE TRUE Equal Free Heterogeneous_pk_E_Lk_Bk
TRUE TRUE Free Free
Heterogeneous_pk_Ek_L_B TRUE FALSE Equal
Equal Heterogeneous_pk_Ek_Lk_B TRUE FALSE
Free Equal Heterogeneous_pk_Ek_L_Bk TRUE
FALSE Equal Free Heterogeneous_pk_Ek_Lk_Bk
TRUE FALSE Free Free Heterogeneous_pk_Ej_L_B
FALSE TRUE Equal Equal
Heterogeneous_pk_Ej_Lk_B FALSE TRUE Free
Equal Heterogeneous_pk_Ej_L_Bk FALSE TRUE
Equal Free Heterogeneous_pk_Ej_Lk_Bk FALSE
TRUE Free Free Heterogeneous_pk_Ekj_L_B
FALSE FALSE Equal Equal Heterogeneous_pk_Ekj_Lk_B
FALSE FALSE Free Equal
Heterogeneous_pk_Ekj_L_Bk FALSE FALSE Equal
Free Heterogeneous_pk_Ekj_Lk_Bk FALSE FALSE
Free Free Heterogeneous_pk_Ekjh_L_B FALSE
FALSE Equal Equal Heterogeneous_pk_Ekjh_Lk_B
FALSE FALSE Free Equal Heterogeneous_pk_Ekjh_L_Bk
FALSE FALSE Equal Free
Heterogeneous_pk_Ekjh_Lk_Bk FALSE FALSE Free
Free Model Prop. Var. Comp.

Details

In heterogeneous case, Gaussian model can only belong to the diagonal family. We assume that the variance matrices $\Sigma_{k}$ are diagonal. In the parameterization, it means that the orientation matrices $D_{k}$ are permutation matrices. We write $\Sigma_{k}=\lambda_{k}B_{k}$ where $B_{k}$ is a diagonal matrix with $| B_{k}|=1$. This particular parameterization gives rise to 4 models: $[\lambda B]$, $[\lambda_{k}B]$, $[\lambda B_{k}]$ and $[\lambda_{k}B_{k}]$. The multinomial distribution is associated to the $j$th variable of the $k$th component is reparameterized by a center $a_k^j$ and the dispersion $\varepsilon_k^j$ around this center. Thus, it allows us to give an interpretation similar to the center and the variance matrix used for continuous data in the Gaussian mixture context. In the following, this model will be denoted by $[\varepsilon_k^j]$. In this context, three other models can be easily deduced. We note $[\varepsilon_k]$ the model where $\varepsilon_k^j$ is independent of the variable $j$, $[\varepsilon^j]$ the model where $\varepsilon_k^j$ is independent of the component $k$ and, finally, $[\varepsilon]$ the model where $\varepsilon_k^j$ is independent of both the variable $j$ and the component $k$. In order to maintain some unity in the notation, we will denote also $[\varepsilon_k^{jh}]$ the most general model introduced at the previous section.

References

C. Biernacki, G. Celeux, G. Govaert, F. Langrognet. "Model-Based Cluster and Discriminant Analysis with the MIXMOD Software". Computational Statistics and Data Analysis, vol. 51/2, pp. 587-600. (2006)

Examples

Run this code
mixmodCompositeModel()
  # composite models with equal proportions
  mixmodCompositeModel(free.proportions=FALSE)
  # composite models with equal proportions and independent of the variable
  mixmodCompositeModel(free.proportions=FALSE, variable.independency=TRUE)
  # composite models with a pre-defined list
  mixmodCompositeModel( listModels=c("Heterogeneous_pk_Ekjh_L_Bk","Heterogeneous_pk_Ekjh_Lk_B") )

Run the code above in your browser using DataLab