Strategy] classmixmodStrategy(algo = "EM", nbTry = 1, initMethod = "smallEM", nbTryInInit = 50, nbIterationInInit = 5, nbIterationInAlgo = 200, epsilonInInit = 0.001, epsilonInAlgo = 0.001, seed = NULL)init is "random" or "smallEM" or "CEM" or
"SEMMax". Default value: 1.algo argument. Possible values: "random",
"smallEM", "CEM", "SEMMax". Default value: "smallEM".initMethod algorithm. nbTryInInit must be a
positive integer. Option available only if init is
"smallEM" or "CEM". Default value: 50.initMethod.
nbIterationInInit must be a positive integer. Only
available if initMethod is "smallEM" or "SEMMax".
Default values: 5 if initMethod is "smallEM" and
100 if initMethod is "SEMMax".initMethod is "smallEM". Default value: 0.001.algo is SEM, so it needs to be
set as NaN in that case. Default value: 0.001.Strategy] object
smallEM stop criterion value has been
reached. This action is repeated until the sum of
$n_i$reaches $50$ iterations (or if in one action $50$ iterations are reached before the stop criterion value).\ It appears that repeating runs of EM is generally profitable since using a single run of EM can often lead to suboptimal solutions.
Defining the algorithms used in the strategy, the stopping rule and when to stop.
nbIterationInAlgo of EM with an
epsilonInAlgo value of $10-3$. mixmodStrategy()
mixmodStrategy(algo="CEM",initMethod="random",nbTry=10,epsilonInInit=0.00001)
mixmodStrategy(algo=c("SEM","EM"), nbIterationInAlgo=c(200,100), epsilonInAlgo=c(NA,0.000001))
Run the code above in your browser using DataLab