
Last chance! 50% off unlimited learning
Sale ends in
MultinomialModel
] classDefine a list of multinomial model to test in MIXMOD.
mixmodMultinomialModel(
listModels = NULL,
free.proportions = TRUE,
equal.proportions = TRUE,
variable.independency = NULL,
component.independency = NULL
)
an object of [MultinomialModel
] containing some of the 10 Binary Models:
Model | Prop. | Var. | Comp. |
Binary_p_E | Equal | TRUE | TRUE |
Binary_p_Ej | FALSE | TRUE | |
Binary_p_Ek | TRUE | FALSE | |
Binary_p_Ekj | FALSE | FALSE | |
Binary_p_Ekjh | FALSE | FALSE | |
Binary_pk_E | Free | TRUE | TRUE |
Binary_pk_Ej | FALSE | TRUE | |
Binary_pk_Ek | TRUE | FALSE | |
Binary_pk_Ekj | FALSE | FALSE | |
Binary_pk_Ekjh | FALSE | FALSE |
a list of characters containing a list of models. It is optional.
logical to include models with free proportions. Default is TRUE.
logical to include models with equal proportions. Default is FALSE.
logical to include models where
logical to include models where
Florent Langrognet and Remi Lebret and Christian Poli ans Serge Iovleff, with contributions from C. Biernacki and G. Celeux and G. Govaert contact@mixmod.org
In the multinomial mixture model, the multinomial distribution is associated to the
C. Biernacki, G. Celeux, G. Govaert, F. Langrognet. "Model-Based Cluster and Discriminant Analysis with the MIXMOD Software". Computational Statistics and Data Analysis, vol. 51/2, pp. 587-600. (2006)
mixmodMultinomialModel()
# multinomial models with equal proportions
mixmodMultinomialModel(equal.proportions = TRUE, free.proportions = FALSE)
# multinomial models with a pre-defined list
mixmodMultinomialModel(listModels = c("Binary_pk_E", "Binary_p_E"))
# multinomial models with equal proportions and independent of the variable
mixmodMultinomialModel(free.proportions = FALSE, variable.independency = TRUE)
Run the code above in your browser using DataLab