# NOT RUN {
# start by extract 10 observations from iris data set
remaining.obs<-sample(1:nrow(iris),10)
# then run a mixmodLearn() analysis without those 10 observations
learn<-mixmodLearn(iris[-remaining.obs,1:4], iris$Species[-remaining.obs])
# create a MixmodPredict to predict those 10 observations
prediction <- mixmodPredict(data=iris[remaining.obs,1:4], classificationRule=learn["bestResult"])
# show results
prediction
# compare prediction with real results
paste("accuracy= ",mean(as.integer(iris$Species[remaining.obs]) == prediction["partition"])*100
,"%",sep="")
## A composite example with a heterogeneous data set
data(heterodatatrain)
## Learning with training data
learn <- mixmodLearn(heterodatatrain[-1],knownLabels=heterodatatrain$V1)
## Prediction on the testing data
data(heterodatatest)
prediction <- mixmodPredict(heterodatatest[-1],learn["bestResult"])
# compare prediction with real results
paste("accuracy= ",mean(heterodatatest$V1 == prediction["partition"])*100,"%",sep="")
# }
Run the code above in your browser using DataLab