optimizeR
searches the interval from
lower
to upper
for a minimum
of the function f
with respect to its first argument.
optimizeR(f, lower, upper, ..., tol = 1e-20,
method = c("Brent", "GoldenRatio"),
maximum = FALSE,
precFactor = 2.0, precBits = -log2(tol) * precFactor,
maxiter = 1000, trace = FALSE)
A list
with components minimum
(or maximum
)
and objective
which give the location of the minimum (or maximum)
and the value of the function at that point;
iter
specifiying the number of iterations, the logical
convergence
indicating if the iterations converged and
estim.prec
which is an estimate or an upper bound of the final
precision (in
method
the string of the method used.
the function to be optimized. f(x)
must work
“in Rmpfr arithmetic” for optimizer()
to make sense.
The function is either minimized or maximized over its first argument
depending on the value of maximum
.
additional named or unnamed arguments to be passed
to f
.
the lower end point of the interval to be searched.
the upper end point of the interval to be searched.
the desired accuracy, typically higher than double
precision, i.e., tol < 2e-16
.
character
string specifying the
optimization method.
logical indicating if
only for default precBits
construction: a factor
to multiply with the number of bits directly needed for tol
.
number of bits to be used for
mpfr
numbers used internally.
maximal number of iterations to be used.
integer or logical indicating if and how iterations
should be monitored; if an integer
"GoldenRatio"
is based on Hans Werner Borchers'
golden_ratio
(package pracma);
modifications and "Brent"
by Martin Maechler.
"Brent"
:Brent(1973)'s simple and robust algorithm
is a hybrid, using a combination of the golden ratio and local
quadratic (“parabolic”) interpolation. This is the same
algorithm as standard R's optimize()
, adapted to
high precision numbers.
In smooth cases, the convergence is considerably faster than the golden section or Fibonacci ratio algorithms.
"GoldenRatio"
:The golden ratio method, aka ‘golden-section search’ works as follows: from a given interval containing the solution, it constructs the next point in the golden ratio between the interval boundaries.
R's standard optimize
;
for multivariate optimization, Rmpfr's hjkMpfr()
;
for root finding, Rmpfr's unirootR
.
## The minimum of the Gamma (and lgamma) function (for x > 0):
Gmin <- optimizeR(gamma, .1, 3, tol = 1e-50)
str(Gmin, digits = 8)
## high precision chosen for "objective"; minimum has "estim.prec" = 1.79e-50
Gmin[c("minimum","objective")]
## it is however more accurate to 59 digits:
asNumeric(optimizeR(gamma, 1, 2, tol = 1e-100)$minimum - Gmin$minimum)
iG5 <- function(x) -exp(-(x-5)^2/2)
curve(iG5, 0, 10, 200)
o.dp <- optimize (iG5, c(0, 10)) #-> 5 of course
oM.gs <- optimizeR(iG5, 0, 10, method="Golden")
oM.Br <- optimizeR(iG5, 0, 10, method="Brent", trace=TRUE)
oM.gs$min ; oM.gs$iter
oM.Br$min ; oM.Br$iter
(doExtras <- Rmpfr:::doExtras())
if(doExtras) {## more accuracy {takes a few seconds}
oM.gs <- optimizeR(iG5, 0, 10, method="Golden", tol = 1e-70)
oM.Br <- optimizeR(iG5, 0, 10, tol = 1e-70)
}
rbind(Golden = c(err = as.numeric(oM.gs$min -5), iter = oM.gs$iter),
Brent = c(err = as.numeric(oM.Br$min -5), iter = oM.Br$iter))
## ==> Brent is orders of magnitude more efficient !
## Testing on the sine curve with 40 correct digits:
sol <- optimizeR(sin, 2, 6, tol = 1e-40)
str(sol)
sol <- optimizeR(sin, 2, 6, tol = 1e-50,
precFactor = 3.0, trace = TRUE)
pi.. <- 2*sol$min/3
print(pi.., digits=51)
stopifnot(all.equal(pi.., Const("pi", 256), tolerance = 10*1e-50))
if(doExtras) { # considerably more expensive
## a harder one:
f.sq <- function(x) sin(x-2)^4 + sqrt(pmax(0,(x-1)*(x-4)))*(x-2)^2
curve(f.sq, 0, 4.5, n=1000)
msq <- optimizeR(f.sq, 0, 5, tol = 1e-50, trace=5)
str(msq) # ok
stopifnot(abs(msq$minimum - 2) < 1e-49)
## find the other local minimum: -- non-smooth ==> Golden ratio -section is used
msq2 <- optimizeR(f.sq, 3.5, 5, tol = 1e-50, trace=10)
stopifnot(abs(msq2$minimum - 4) < 1e-49)
## and a local maximum:
msq3 <- optimizeR(f.sq, 3, 4, maximum=TRUE, trace=2)
stopifnot(abs(msq3$maximum - 3.57) < 1e-2)
}#end {doExtras}
##----- "impossible" one to get precisely ------------------------
ff <- function(x) exp(-1/(x-8)^2)
curve(exp(-1/(x-8)^2), -3, 13, n=1001)
(opt. <- optimizeR(function(x) exp(-1/(x-8)^2), -3, 13, trace = 5))
## -> close to 8 {but not very close!}
ff(opt.$minimum) # gives 0
if(doExtras) {
## try harder ... in vain ..
str(opt1 <- optimizeR(ff, -3,13, tol = 1e-60, precFactor = 4))
print(opt1$minimum, digits=20)
## still just 7.99998038 or 8.000036655 {depending on method}
}
Run the code above in your browser using DataLab