"RoBMA"
ensemble implied by the specified priorscheck_setup
prints summary of "RoBMA"
ensemble
implied by the specified prior distributions. It is useful for checking
the ensemble configuration prior to fitting all of the models.
check_setup(
model_type = NULL,
priors_effect = prior(distribution = "normal", parameters = list(mean = 0, sd = 1)),
priors_heterogeneity = prior(distribution = "invgamma", parameters = list(shape = 1,
scale = 0.15)),
priors_bias = list(prior_weightfunction(distribution = "two.sided", parameters =
list(alpha = c(1, 1), steps = c(0.05)), prior_weights = 1/12),
prior_weightfunction(distribution = "two.sided", parameters = list(alpha = c(1, 1,
1), steps = c(0.05, 0.1)), prior_weights = 1/12), prior_weightfunction(distribution =
"one.sided", parameters = list(alpha = c(1, 1), steps = c(0.05)), prior_weights =
1/12), prior_weightfunction(distribution = "one.sided", parameters = list(alpha =
c(1, 1, 1), steps = c(0.025, 0.05)), prior_weights = 1/12),
prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1,
1), steps = c(0.05, 0.5)), prior_weights = 1/12), prior_weightfunction(distribution =
"one.sided", parameters = list(alpha = c(1, 1, 1, 1), steps = c(0.025, 0.05, 0.5)),
prior_weights = 1/12), prior_PET(distribution = "Cauchy", parameters = list(0, 1),
truncation = list(0, Inf), prior_weights = 1/4), prior_PEESE(distribution = "Cauchy",
parameters = list(0, 5), truncation = list(0, Inf), prior_weights = 1/4)),
priors_effect_null = prior(distribution = "point", parameters = list(location = 0)),
priors_heterogeneity_null = prior(distribution = "point", parameters = list(location =
0)),
priors_bias_null = prior_none(),
priors_hierarchical = prior("beta", parameters = list(alpha = 1, beta = 1)),
priors_hierarchical_null = NULL,
models = FALSE,
silent = FALSE
)check_setup.RoBMA(
model_type = NULL,
priors_effect = prior(distribution = "normal", parameters = list(mean = 0, sd = 1)),
priors_heterogeneity = prior(distribution = "invgamma", parameters = list(shape = 1,
scale = 0.15)),
priors_bias = list(prior_weightfunction(distribution = "two.sided", parameters =
list(alpha = c(1, 1), steps = c(0.05)), prior_weights = 1/12),
prior_weightfunction(distribution = "two.sided", parameters = list(alpha = c(1, 1,
1), steps = c(0.05, 0.1)), prior_weights = 1/12), prior_weightfunction(distribution =
"one.sided", parameters = list(alpha = c(1, 1), steps = c(0.05)), prior_weights =
1/12), prior_weightfunction(distribution = "one.sided", parameters = list(alpha =
c(1, 1, 1), steps = c(0.025, 0.05)), prior_weights = 1/12),
prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1,
1), steps = c(0.05, 0.5)), prior_weights = 1/12), prior_weightfunction(distribution =
"one.sided", parameters = list(alpha = c(1, 1, 1, 1), steps = c(0.025, 0.05, 0.5)),
prior_weights = 1/12), prior_PET(distribution = "Cauchy", parameters = list(0, 1),
truncation = list(0, Inf), prior_weights = 1/4), prior_PEESE(distribution = "Cauchy",
parameters = list(0, 5), truncation = list(0, Inf), prior_weights = 1/4)),
priors_effect_null = prior(distribution = "point", parameters = list(location = 0)),
priors_heterogeneity_null = prior(distribution = "point", parameters = list(location =
0)),
priors_bias_null = prior_none(),
priors_hierarchical = prior("beta", parameters = list(alpha = 1, beta = 1)),
priors_hierarchical_null = NULL,
models = FALSE,
silent = FALSE
)
check_setup
invisibly returns list of summary tables.
string specifying the RoBMA ensemble. Defaults to NULL
.
The other options are "PSMA"
, "PP"
, and "2w"
which override
settings passed to the priors_effect
, priors_heterogeneity
,
priors_effect
, priors_effect_null
, priors_heterogeneity_null
,
priors_bias_null
, and priors_effect
. See details for more information
about the different model types.
list of prior distributions for the effect size (mu
)
parameter that will be treated as belonging to the alternative hypothesis. Defaults to
a standard normal distribution
prior(distribution = "normal", parameters = list(mean = 0, sd = 1))
.
list of prior distributions for the heterogeneity tau
parameter that will be treated as belonging to the alternative hypothesis. Defaults to
prior(distribution = "invgamma", parameters = list(shape = 1, scale = .15))
that
is based on heterogeneities estimates from psychology erp2017estimatesRoBMA.
list of prior distributions for the publication bias adjustment
component that will be treated as belonging to the alternative hypothesis.
Defaults to list(
prior_weightfunction(distribution = "two.sided", parameters = list(alpha = c(1, 1),
steps = c(0.05)), prior_weights = 1/12),
prior_weightfunction(distribution = "two.sided", parameters = list(alpha = c(1, 1, 1),
steps = c(0.05, 0.10)), prior_weights = 1/12),
prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1),
steps = c(0.05)), prior_weights = 1/12),
prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1, 1),
steps = c(0.025, 0.05)), prior_weights = 1/12),
prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1, 1),
steps = c(0.05, 0.5)), prior_weights = 1/12),
prior_weightfunction(distribution = "one.sided", parameters = list(alpha = c(1, 1, 1, 1),
steps = c(0.025, 0.05, 0.5)), prior_weights = 1/12),
prior_PET(distribution = "Cauchy", parameters = list(0,1), truncation = list(0, Inf),
prior_weights = 1/4),
prior_PEESE(distribution = "Cauchy", parameters = list(0,5), truncation = list(0, Inf),
prior_weights = 1/4)
)
, corresponding to the RoBMA-PSMA model introduce by bartos2021no;textualRoBMA.
list of prior distributions for the effect size (mu
)
parameter that will be treated as belonging to the null hypothesis. Defaults to
a point null hypotheses at zero,
prior(distribution = "point", parameters = list(location = 0))
.
list of prior distributions for the heterogeneity tau
parameter that will be treated as belonging to the null hypothesis. Defaults to
a point null hypotheses at zero (a fixed effect meta-analytic models),
prior(distribution = "point", parameters = list(location = 0))
.
list of prior weight functions for the omega
parameter
that will be treated as belonging to the null hypothesis. Defaults no publication
bias adjustment, prior_none()
.
list of prior distributions for the correlation of random effects
(rho
) parameter that will be treated as belonging to the alternative hypothesis. This setting allows
users to fit a hierarchical (three-level) meta-analysis when study_ids
are supplied.
Note that this is an experimental feature and see News for more details. Defaults to a beta distribution
prior(distribution = "beta", parameters = list(alpha = 1, beta = 1))
.
list of prior distributions for the correlation of random effects
(rho
) parameter that will be treated as belonging to the null hypothesis. Defaults to NULL
.
should the models' details be printed.
do not print the results.
check_setup.reg()
RoBMA()