if (FALSE) {
data("fertilization", package = "RoBTT")
fit <- RoBTT(
x1 = fertilization$Self,
x2 = fertilization$Crossed,
prior_delta = prior("cauchy", list(0, 1/sqrt(2))),
prior_rho = prior("beta", list(3, 3)),
seed = 1,
chains = 1,
warmup = 1000,
iter = 2000,
control = set_control(adapt_delta = 0.95)
)
# plot the model-averaged effect size estimate
plot(fit, parameter = "delta")
# plot prior and posterior of the conditional effect size estimate
plot(fit, parameter = "delta", conditional = TRUE, prior = TRUE)
}
Run the code above in your browser using DataLab