# NOT RUN {
set.seed(123) # to have reproducible results for package checking
## similar to rowRoblox of package RobLox
ind <- rbinom(200, size=1, prob=0.05)
X <- matrix(rnorm(200, mean=ind*3, sd=(1-ind) + ind*9), nrow = 2)
robloxbioc(X)
robloxbioc(X, steps = 5)
robloxbioc(X, eps = 0.05)
robloxbioc(X, eps = 0.05, steps = 5)
## Don't run to reduce check time on CRAN
# }
# NOT RUN {
## the function is designed for large scale problems
X <- matrix(rnorm(50000*20, mean = 1), nrow = 50000)
system.time(robloxbioc(X))
## using Affymetrix-Data
## confer example to generateExprVal.method.mas
## A more worked out example can be found in the scripts folder
## of the package.
data(SpikeIn)
probes <- pm(SpikeIn)
mas <- generateExprVal.method.mas(probes)
rl <- 2^robloxbioc(log2(t(probes)))
concentrations <- as.numeric(colnames(SpikeIn))
plot(concentrations, mas$exprs, log="xy", ylim=c(50,10000), type="b",
ylab = "expression measures")
points(concentrations, rl[,1], pch = 20, col="orange", type="b")
legend("topleft", c("MAS", "roblox"), pch = c(1, 20))
require(affydata)
data(Dilution)
eset <- robloxbioc(Dilution)
## Affymetrix scale normalization
eset1 <- robloxbioc(Dilution, normalize = TRUE)
## "Not run" just because of computation time
require(beadarrayExampleData)
data(exampleBLData)
res <- robloxbioc(exampleBLData, eps.upper = 0.5)
res
# }
Run the code above in your browser using DataLab