set.seed(123) # to have reproducible results for package checking
## matrix method for KolmogorovMinDist
ind <- rbinom(200, size=1, prob=0.05)
X <- matrix(rnorm(200, mean=ind*3, sd=(1-ind) + ind*9), nrow = 2)
KolmogorovMinDist(X, D = Norm())
## using Affymetrix data
data(SpikeIn)
probes <- log2(pm(SpikeIn))
(res <- KolmogorovMinDist(probes, Norm()))
boxplot(res$dist)
# \donttest{
## \donttest because of check time
## using Affymetrix data
library(affydata)
data(Dilution)
res <- KolmogorovMinDist(Dilution[,1], Norm())
summary(res$dist)
boxplot(res$dist)
plot(res$n, res$dist, pch = 20, main = "Kolmogorov distance vs. sample size",
xlab = "sample size", ylab = "Kolmogorov distance",
ylim = c(0, max(res$dist)))
uni.n <- min(res$n):max(res$n)
lines(uni.n, 1/(2*uni.n), col = "orange", lwd = 2)
legend("topright", legend = "minimal possible distance", fill = "orange")
## Illumina bead level data
library(beadarrayExampleData)
data(exampleBLData)
res <- KolmogorovMinDist(exampleBLData, Norm(), arrays = 1)
res1 <- KolmogorovMinDist(exampleBLData, Norm(), log = TRUE, arrays = 1)
summary(cbind(res$dist, res1$dist))
boxplot(list(res$dist, res1$dist), names = c("raw", "log-raw"))
sort(unique(res1$n))
plot(res1$n, res1$dist, pch = 20, main = "Kolmogorov distance vs. sample size",
xlab = "sample size", ylab = "Kolmogorov distance",
ylim = c(0, max(res1$dist)), xlim = c(min(res1$n), 56))
uni.n <- min(res1$n):56
lines(uni.n, 1/(2*uni.n), col = "orange", lwd = 2)
legend("topright", legend = "minimal possible distance", fill = "orange")
# }
Run the code above in your browser using DataLab