library(SuperLearner)
library(ranger)
n <- 1000
set.seed(10)
DATA2 <- data.frame(A=rbinom(n, size=1, prob=0.5),
y=rbinom(n, size=1, prob=0.2),
x1=rnorm(n),
x2=rnorm(n),
x3=as.factor(rbinom(n, size=1, prob=0.5)),
z1=rbinom(n, size=1, prob=0.5),
z2=rbinom(n, size=1, prob=0.5))
DATA2[, "y"] <- NA
As <- DATA2$A == 1
DATA2[DATA2$A == 1, "y"] <- rbinom(
sum(As),
size=1,
prob=exp(DATA2[As,]$x1)/(1+exp(DATA2[As,]$x1)))
DATA2[DATA2$A == 0, "y"] <- rbinom(
n-sum(As),
size=1,
prob=exp(1 +
5*DATA2[!As,]$x1 + DATA2[!As,]$x2)/
(1+exp(1 + 5*DATA2[!As,]$x1 + DATA2[!As,]$x2)))
DATA2$A <- as.factor(DATA2$A)
sl.mod <- robincar_SL(
df=DATA2,
response_col="y",
treat_col="A",
car_strata_cols=c("z1"),
covariate_cols=c("x1"),
SL_libraries=c("SL.ranger"),
car_scheme="permuted-block",
covariate_to_include_strata=TRUE
)
sl.mod$result
Run the code above in your browser using DataLab