Learn R Programming

RobustGaSP (version 0.6.6)

log_marginal_lik: Natural logarithm of marginal likelihood of the robust GaSP model

Description

This function computes the natural logarithm of marginal likelihood after marginalizing out the mean (trend) and variance parameters by the location-scale prior.

Usage

log_marginal_lik(param, nugget, nugget_est, R0, X, zero_mean,output, kernel_type, alpha)

Value

The numerical value of natural logarithm of the marginal likelihood.

Arguments

param

a vector of natural logarithm of inverse-range parameters and natural logarithm of the nugget-variance ratio parameter.

nugget

the nugget-variance ratio parameter if this parameter is fixed.

nugget_est

Boolean value of whether the nugget is estimated or fixed.

R0

a list of matrix where the j-th matrix is an absolute difference matrix of the j-th input vector.

X

the mean basis function i.e. the trend function.

zero_mean

the mean basis function is zero or not.

output

the output vector.

kernel_type

A vector of integer specifying the type of kernels of each coordinate of the input. In each coordinate of the vector, 1 means the pow_exp kernel with roughness parameter specified in alpha; 2 means matern_3_2 kernel; 3 means matern_5_2 kernel; 5 means periodic_gauss kernel; 5 means periodic_exp kernel.

alpha

Roughness parameters in the kernel functions.

Author

tools:::Rd_package_author("RobustGaSP")

Maintainer: tools:::Rd_package_maintainer("RobustGaSP")

References

M. Gu. (2016). Robust uncertainty quantification and scalable computation for computer models with massive output. Ph.D. thesis. Duke University.