Learn R Programming

RobustGaSP (version 0.6.6)

log_marginal_lik_ppgasp: Natural logarithm of marginal likelihood of the PP GaSP model

Description

This function computes the natural logarithm of marginal likelihood of the PP GaSP model after marginalizing out the mean (trend) and variance parameters by the location-scale prior.

Usage

log_marginal_lik_ppgasp(param, nugget, nugget_est, R0, X, zero_mean,output,
kernel_type, alpha)

Value

The numerical value of natural logarithm of the marginal likelihood.

Arguments

param

a vector of natural logarithm of inverse-range parameters and natural logarithm of the nugget-variance ratio parameter.

nugget

the nugget-variance ratio parameter if this parameter is fixed.

nugget_est

Boolean value of whether the nugget is estimated or fixed.

R0

a List of matrix where the j-th matrix is an absolute difference matrix of the j-th input vector.

X

the mean basis function i.e. the trend function.

zero_mean

the mean basis function is zero or not.

output

a matrix where each row is one runs of the computer model output.

kernel_type

type of kernel. matern_3_2 and matern_5_2 are Matern kernel with roughness parameter 3/2 and 5/2 respectively. pow_exp is power exponential kernel with roughness parameter alpha. If pow_exp is to be used, one needs to specify its roughness parameter alpha.

alpha

roughness parameters in the kernel functions.

Author

tools:::Rd_package_author("RobustGaSP")

Maintainer: tools:::Rd_package_maintainer("RobustGaSP")

References

M. Gu. and J.O. Berger (2016). Parallel partial Gaussian process emulation for computer models with massive output. Annals of Applied Statistics, 10(3), 1317-1347.

M. Gu. (2016). Robust Uncertainty Quantification and Scalable Computation for Computer Models with Massive Output. Ph.D. thesis. Duke University.