Learn R Programming

RobustGaSP (version 0.6.6)

neg_log_marginal_post_ref: Negative natural logarithm of reference marginal posterior density of the robust GaSP model with regard to a specific parameterization.

Description

Negative natural logarithm of marginal posterior density (with regard to a specific parameterization) with reference prior of inverse range parameter (beta parameterization) after marginalizing out the mean (trend) and variance parameters by the location-scale prior.

Usage

neg_log_marginal_post_ref(param, nugget, nugget.est, 
                          R0, X, zero_mean,output, prior_choice, 
                          kernel_type, alpha)

Value

The negative natural logarithm of marginal posterior density with reference prior with regard to a specific parameterization.

Arguments

param

a vector of natural logarithm of inverse-range parameters and natural logarithm of the noise-variance ratio parameter.

nugget

the noise-variance ratio parameter if this parameter is fixed.

nugget.est

Boolean value of whether the nugget is estimated or fixed.

R0

a list of matrix where the j-th matrix is an absolute difference matrix of the j-th input vector.

X

the mean basis function i.e. the trend function.

zero_mean

the mean basis function is zero or not.

output

the output vector.

prior_choice

parameterization: ref_xi for log inverse range parameterization or ref_gamma for range parameterization.

kernel_type

type of kernel. matern_3_2 and matern_5_2 are Matern kernel with roughness parameter 3/2 and 5/2 respectively. pow_exp is power exponential kernel with roughness parameter alpha. If pow_exp is to be used, one needs to specify its roughness parameter alpha.

alpha

roughness parameters in the kernel functions.

Author

tools:::Rd_package_author("RobustGaSP")

Maintainer: tools:::Rd_package_maintainer("RobustGaSP")

References

Mengyang Gu. (2016). Robust Uncertainty Quantification and Scalable Computation for Computer Models with Massive Output. Ph.D. thesis. Duke University.