powered by
Compute a robust version of the F-Beta Score.
robFScore( actual = NULL, predicted = NULL, TP = NULL, FN = NULL, FP = NULL, TN = NULL, beta = 1, d0 = 0.1 )
robust F-Beta Score.
A vector of actual values (1/0 or TRUE/FALSE)
A vector of prediction values (1/0 or TRUE/FALSE)
Count of true positives (correctly predicted 1/TRUE)
Count of false negatives (predicted 0/FALSE, but actually 1/TRUE)
Count of false positives (predicted 1/TRUE, but actually 0/FALSE)
Count of true negatives (correctly predicted 0/FALSE)
Beta squared is the weight of recall in the harmonic mean
Weight of the estimated true positive probability in the harmonic mean
Calculate the robust F-Beta Score \(F_{\beta,d_0}\) with two parameters. Provide either:
actual and predicted or
actual
predicted
TP, FN, FP and TN.
TP
FN
FP
TN
If \(d_0=0\), the robust F-Beta Score coincides with the F-Beta Score.
Holzmann, H., Klar, B. (2024). Robust performance metrics for imbalanced classification problems. arXiv:2404.07661. LINK
actual <- c(1,1,1,1,1,1,0,0,0,0) predicted <- c(1,1,1,1,0,0,1,0,0,0) robFScore(actual, predicted, beta=1, d0=0.1) robFScore(TP=4, FN=2, FP=1, TN=3, beta=1, d0=1)
Run the code above in your browser using DataLab