powered by
Compute a robust version of Matthews correlation coefficient (MCC).
robMCC( actual = NULL, predicted = NULL, TP = NULL, FN = NULL, FP = NULL, TN = NULL, d = 0.1 )
robust MCC.
A vector of actual values (1/0 or TRUE/FALSE)
A vector of prediction values (1/0 or TRUE/FALSE)
Count of true positives (correctly predicted 1/TRUE)
Count of false negatives (predicted 0/FALSE, but actually 1/TRUE)
Count of false positives (predicted 1/TRUE, but actually 0/FALSE)
Count of true negatives (correctly predicted 0/FALSE)
Parameter of the robust MCC
Calculate the robust MCC. Provide either:
actual and predicted or
actual
predicted
TP, FN, FP and TN.
TP
FN
FP
TN
If \(d=0\), the robust MCC coincides with the MCC.
Holzmann, H., Klar, B. (2024). Robust performance metrics for imbalanced classification problems. arXiv:2404.07661. LINK
actual <- c(1,1,1,1,1,1,0,0,0,0) predicted <- c(1,1,1,1,0,0,1,0,0,0) robMCC(actual, predicted, d=0.05) robMCC(TP=4, FN=2, FP=1, TN=3, d=0.05)
Run the code above in your browser using DataLab