#######################################################################
## Example 1: Constructing the decision-relative discernibility matrix
#######################################################################
data(RoughSetData)
decision.table <- RoughSetData$pima7.dt
control.1 <- list(type.relation = c("tolerance", "eq.1"),
type.aggregation = c("t.tnorm", "min"),
t.implicator = "kleene_dienes", type.LU = "implicator.tnorm")
res.1 <- BC.discernibility.mat.FRST(decision.table, type.discernibility = "standard.red",
control = control.1)
control.2 <- list(epsilon = 0)
res.2 <- BC.discernibility.mat.FRST(decision.table, type.discernibility = "gaussian.red",
control = control.2)
control.3 <- list(type.relation = c("tolerance", "eq.1"),
type.aggregation = c("t.tnorm", "min"),
t.implicator = "lukasiewicz", alpha.precision = 0.05)
res.3 <- BC.discernibility.mat.FRST(decision.table, type.discernibility = "alpha.red",
control = control.3)
control.4 <- list(type.relation = c("tolerance", "eq.1"),
type.aggregation = c("t.tnorm", "lukasiewicz"),
t.implicator = "lukasiewicz", type.LU = "implicator.tnorm")
res.4 <- BC.discernibility.mat.FRST(decision.table, type.discernibility = "min.element",
control = control.4)
#######################################################################
## Example 2: Constructing the decision-relative discernibility matrix
#######################################################################
data(RoughSetData)
decision.table <- RoughSetData$hiring.dt
control.1 <- list(type.relation = c("crisp"),
type.aggregation = c("crisp"),
t.implicator = "lukasiewicz", type.LU = "implicator.tnorm")
res.1 <- BC.discernibility.mat.FRST(decision.table, type.discernibility = "standard.red",
control = control.1)
control.2 <- list(epsilon = 0)
res.2 <- BC.discernibility.mat.FRST(decision.table, type.discernibility = "gaussian.red",
control = control.2)
Run the code above in your browser using DataLab