RI.indiscernibilityBasedRules.RST(decision.table, feature.set)
"DecisionTable"
class, which represents a decision system.
See SF.asDecisionTable
."FeatureSubset"
class which is a typical output of feature
selection methods based on RST e.g. FS.greedy.heuristic.reduct.RST
.
"RuleSetRST"
, which is a list with additional attributes:
uniqueCls
: a vector of possible decision classes,clsProbs
: a vector giving the a priori probability of the decision classes,majorityCls
: a class label representing the majority class in the data,method
: the type a rule induction method used for computations,dec.attr
: a name of the decision attribute in data,colnames
: a vector of conditional attribute names.idx
: a vector of indexes of attribute that are used in antecedent of a rule,values
: a vector of values of attributes indicated byidx
,consequent
: a value of the consequent of a rule,support
: a vactor of integers indicating objects from the data, which support a given rule,laplace
: ia numeric value representing the Laplace estimate of the rule's confidence.After obtaining the rules, decision classes of new objects can be predicted using the predict
method or
by a direct call to predict.RuleSetRST
.
predict.RuleSetRST
, RI.CN2Rules.RST
, RI.LEM2Rules.RST
,
RI.AQRules.RST
.###########################################################
## Example
##############################################################
data(RoughSetData)
hiring.data <- RoughSetData$hiring.dt
## determine feature subset/reduct
reduct <- FS.reduct.computation(hiring.data,
method = "permutation.heuristic",
permutation = FALSE)
rules <- RI.indiscernibilityBasedRules.RST(hiring.data, reduct)
rules
Run the code above in your browser using DataLab