Learn R Programming

Rraven (version 1.0.14)

imp_corr_mat: Import 'Raven' batch correlator output

Description

imp_corr_mat imports the output of 'Raven' batch correlator.

Usage

imp_corr_mat(file, path = NULL)

Value

A list with 2 matrices. The first one contains the correlation coefficients and the second one the time lags of the peak correlations.

Arguments

file

A character string with the name of the output '.txt' file generated by Raven.

path

A character string indicating the path of the directory in which to look for the text files. If not provided (default) the function searches into the current working directory.

Author

Marcelo Araya-Salas (marcelo.araya@ucr.ac.cr)

Details

The function imports the output of a batch correlation routine in Raven. Both the correlation and lag matrices contained in the output ' .txt' file are read and both waveform and spectrogram (cross-correlation) correlations can be imported.

See Also

imp_raven; exp_raven

Examples

Run this code
if (FALSE) { 
# Load data
library(NatureSounds)
data(list = c("Phae.long1", "Phae.long2", "Phae.long3", "Phae.long4", "lbh_selec_table"))

tuneR::writeWave(Phae.long1, file.path(tempdir(), 
"Phae.long1.wav"), extensible = FALSE) #save sound files 
tuneR::writeWave(Phae.long2, file.path(tempdir(), 
"Phae.long2.wav"), extensible = FALSE)
tuneR::writeWave(Phae.long3, file.path(tempdir(), 
"Phae.long3.wav"), extensible = FALSE)
tuneR::writeWave(Phae.long4, file.path(tempdir(), 
"Phae.long4.wav"), extensible = FALSE)

#create new folder to put cuts
dir.create(file.path(tempdir(), "cuts"))

# cut files
cut_sels(X = lbh_selec_table, mar = 0.05, path = tempdir(),
 dest.path = file.path(tempdir(), "cuts"))

#Now run 'Raven' batch correlator un the cuts and save the output in the same folder

# Import output (change the name of the file if you used a different one)
xcorr.rav <- imp_corr_mat(file = "BatchCorrOutput.txt", 
path = file.path(tempdir(), "cuts"))

# check results
  
## correlation matrix
xcorr.rav[[1]]

## time lag matrix
xcorr.rav[[2]]
}

Run the code above in your browser using DataLab