# Decompose 'co2' series with default parameters
s <- ssa(co2)
# Show the summary
summary(s)
# Reconstruct the series, with suitable grouping
r <- reconstruct(s, groups = list(c(1, 4), c(2, 3), c(5, 6)))
plot(r)
# Decompose 'EuStockMarkets' series with default parameters
s <- ssa(EuStockMarkets, kind = "mssa")
r <- reconstruct(s, groups = list(Trend = 1:2))
# Plot original series, trend and residuals superimposed
plot(r, plot.method = "xyplot", superpose = TRUE,
auto.key = list(columns = 3),
col = c("blue", "green", "red", "violet"),
lty = c(rep(1, 4), rep(2, 4), rep(3, 4)))
# Artificial image for 2dSSA
mx <- outer(1:50, 1:50,
function(i, j) sin(2*pi * i/17) * cos(2*pi * j/7) + exp(i/25 - j/20)) +
rnorm(50^2, sd = 0.1)
# Decompose 'mx' with circular window
s <- ssa(mx, kind = "2d-ssa", wmask = circle(5), neig = 10)
# Reconstruct
r <- reconstruct(s, groups = list(1, 2:5))
# Plot components, original image and residuals
plot(r)
# Real example: Mars photo
data(Mars)
# Decompose only Mars image (without backgroud)
s <- ssa(Mars, mask = Mars != 0, wmask = circle(50), kind = "2d-ssa")
# Plot eigenarrays
plot(s, type = "vectors", idx = 1:25)
# Plot factor arrays
plot(s, type = "vectors", vectors = "factor", idx = 1:25)
# Reconstruct and plot trend
plot(reconstruct(s, 1), fill.uncovered = "original")
# Reconstruct and plot texture pattern
plot(reconstruct(s, groups = list(c(13,14, 17, 18))))
# I()-wrapper demo
circle <- 50
s <- ssa(Mars, wmask = circle(R = I(circle)))
# CSSA-based trend extraction
s <- ssa(EuStockMarkets[, 1] + 1.0i*EuStockMarkets[, 2], kind = "cssa")
r <- reconstruct(s, groups = list(Trend = 1:2))
plot(r)
# `co2' decomposition with double projection to linear functions
s <- ssa(co2, column.projector = "centering", row.projector = "centering")
plot(reconstruct(s, groups = list(trend = seq_len(nspecial(s)))))
Run the code above in your browser using DataLab