The dsubbo
returns the density at point x for the
Subbotin distribution with parameters \(a\), \(b\), \(m\).
dsubbo(x, m = 0, a = 1, b = 2)
a vector containing the values for the densities.
(numeric) - value in the range \((-\infty, \infty)\) to evaluate the density.
(numeric) - location parameter.
(numeric) - scale parameter. Must be in the range \((0, \infty)\).
(numeric) - shape parameter. Must be in the range \((0, \infty)\).
The Subbotin distribution is a exponential power distribution controlled by three parameters, with formula: $$f(x;a,b,m) = \frac{1}{A} e^{-\frac{1}{b} |\frac{x-m}{a}|^b}$$ with: $$A = 2ab^{1/b}\Gamma(1+1/b)$$ where \(a\) is a scale parameter, \(b\) controls the tails (lower values represent fatter tails), and \(m\) is a location parameter.