Runuran provides an interface to the UNU.RAN library for
universal non-uniform random number generators. This is a very
flexible and powerful collection of sampling routines, where the user
first has to specify the target distribution and then has to choose an
appropriate sampling method. Creating an object for a particular distribution can be a bit
tedious especially if the target distribution has a more complex
density function. Thus we have compiled a set of functions that
provides ready-to-use distribution objects.
Moreover, using these object often results in faster setup time than
objects created with pure Rcode.
These functions share a similar syntax and naming scheme
(only ud
is prefixed) with analogous Rbuilt-in functions that
provide density, distribution function and quantile:
ud...(distribution parameters, lb , ub)
Currently generators for the following distributions are implemented. Continuous Univariate Distributions (26):
lcl{
Function Distribution
udbeta
... Beta
udcauchy
... Cauchy
udchi
... Chi
udchisq
... Chi-squared
udexp
... Exponential
udf
... F
udfrechet
... Frechet (Extreme value type II)
udgamma
... Gamma
udghyp
... Generalized Hyperbolic
udgig
... Generalized Inverse Gaussian
udgumbel
... Gumbel (Extreme value type I)
udhyperbolic
... Hyperbolic
udig
... Inverse Gaussian (Wald)
udlaplace
... Laplace (double exponential)
udlnorm
... Log Normal
udlogis
... Logistic
udlomax
... Lomax (Pareto of second kind)
udmeixner
... Meixner
udnorm
... Normal (Gaussian)
udpareto
... Pareto (of first kind)
udpowerexp
... Powerexponential (Subbotin)
udrayleigh
... Rayleigh
udslash
... Slash
udt
... t (Student)
udvg
... Variance Gamma
udweibull
... Weibull (Extreme value type III)
}
Discrete Distributions (6):
lcl{
Function Distribution
udbinom
... Binomial
udgeom
... Geometric
udhyper
... Hypergeometric
udlogarithmic
... Logarithmic
udnbinom
... Negative Binomial
udpois
... Poisson
}