Learn R Programming

Runuran (version 0.21.0)

udmeixner: UNU.RAN object for Meixner distribution

Description

Create UNU.RAN object for a Meixner distribution with scale parameter alpha, asymmetry (shape) parameter beta, shape parameter delta and location parameter mu. [Distribution] -- Meixner.

Usage

udmeixner(alpha, beta, delta, mu, lb=-Inf, ub=Inf)

Arguments

alpha
scale parameter (must be strictly positive).
beta
asymmetry (shape) parameter (must be larger than $-\pi$ and smaller than $\pi$).
delta
shape parameter (must be strictly positive).
mu
location parameter.
lb
lower bound of (truncated) distribution.
ub
upper bound of (truncated) distribution.

Value

  • An object of class "unuran.cont".

Details

The Mexiner distribution with parameters $\alpha$, $\beta$, $\delta$, and $\mu$ has density $$f(x) = \kappa \,\exp(\beta(x-\mu)/\alpha) \, |\Gamma\left(\delta+ i(x-\mu)/\alpha\right)|^2$$ where the normalization constant is given by $$\kappa = \frac{\left(2\cos\left(\beta/2\right)\right)^{2\delta}}{ 2 \alpha \pi \, \Gamma\left(2 \delta\right)}$$

The symbol $i$ denotes the imaginary unit, that is, we have to evaluate the gamma function $\Gamma(z)$ for complex arguments $z= x + i\,y$.

Notice that $\alpha>0$, $|\beta| < \pi$ and $\delta>0$.

The domain of the distribution can be truncated to the interval (lb,ub).

References

Grigelionis, B., 1999. Processes of Meixner type. Lithuanian Mathematical Journal, Vol. 39, p. 33--41. Schoutens, W., 2001. The Meixner Processes in Finance. Eurandom Report 2001-002, Eurandom, Eindhoven.

See Also

unuran.cont.

Examples

Run this code
## Create distribution object for meixner distribution
distr <- udmeixner(alpha=0.0298, beta=0.1271, delta=0.5729, mu=-0.0011)
## Generate generator object; use method PINV (inversion)
gen <- pinvd.new(distr)
## Draw a sample of size 100
x <- ur(gen,100)

Run the code above in your browser using DataLab