If location
or scale
are not specified, they assume
the default values of 0
and 1
respectively.
The Cauchy distribution with location \(l\) and scale \(s\) has
density
$$
f(x) = \frac{1}{\pi s}
\left( 1 + \left(\frac{x - l}{s}\right)^2 \right)^{-1}
$$
for all \(x\).
The generation algorithm uses fast numerical inversion. The parameters
lb
and ub
can be used to generate variates from
the Cauchy distribution truncated to the interval (lb
,ub
).