Learn R Programming

SAPP (version 1.0.4)

eptren: Maximum Likelihood Estimates of Intensity Rates

Description

Compute the maximum likelihood estimates of intensity rates of either exponential polynomial or exponential Fourier series of non-stationary Poisson process models.

Usage

eptren(data, mag=NULL, threshold=0.0, nparam, nsub, cycle=0, tmpfile=NULL,
         nlmax=1000, plot=TRUE)

Arguments

data
point process data.
mag
magnitude.
threshold
threshold magnitude.
nparam
maximum number of parameters.
nsub
number of subdivisions in either (0,$t$) or (0,$cycle$), where $t$ is the length of observed time interval of points.
cycle
periodicity to be investigated days in a Poisson process model. If zero (default) fit an exponential polynomial model.
tmpfile
write the process of minimizing by davidon-fletcher-powell procedure to $tmpfile$. If "" print the process to the standard output and if NULL (default) no report.
nlmax
the maximum number of steps in the process of minimizing.
plot
logical. If TRUE (default) intensity rates are plotted.

Value

  • aicAIC.
  • paramparameters.
  • aicminminimum AIC.
  • maice.ordernumber of parameters of minimum AIC.
  • timetime ( cycle=0 ) or superposed occurrence time ( cycle>0 ).
  • intensityintensity rates.

Details

This function computes the maximum likelihood estimates (MLEs) of the coefficients $A_1, A_2, ..., A_n$ is an exponential polynomial $$f(t) = exp(A_1 + A_2t + A_3t^2 + ... )$$ or $A_1, A_2, B_2, ..., A_n, B_n$ in a Poisson process model with an intensity taking the form of an exponential Fourier series $$f(t) = exp{ A_1 + A_2cos(2\pi t/p) + B_2sin(2\pi t/p) + A_3cos(4\pi t/p) + B_3sin(4\pi t/p) +... }$$ which represents the time varying rate of occurrence (intensity function) of earthquakes in a region. These two models belong to the family of non-stationary Poisson process. The optimal order $n$ can be determined by minimize the value of the Akaike Information Criterion (AIC).

References

Y.Ogata, K.Katsura and J.Zhuang (2006) Computer Science Monographs, No.32, TIMSAC84: STATISTICAL ANALYSIS OF SERIES OF EVENTS (TIMSAC84-SASE) VERSION 2. The Institute of Statistical Mathematics. Y.Ogata (2006) Computer Science Monographs, No.33, Statistical Analysis of Seismicity - updated version (SASeies2006). The Institute of Statistical Mathematics.

Examples

Run this code
## The Occurrence Times Data of 627 Brastings
  data(Brastings)
  eptren(Brastings,,, 10, 1000)      # exponential polynomial trend fitting

  eptren(Brastings,,, 10, 1000, 1)   # exponential fourier series fitting

## Poisson Process data
  data(PoissonData)
  eptren(PoissonData,,, 10, 1000)      # exponential polynomial trend fitting

  eptren(PoissonData,,, 10, 1000, 1)   # exponential fourier series fitting

## The aftershock data of 26th July 2003 earthquake of M6.2
  data(main2003JUL26)
  x <- main2003JUL26
  eptren(x$time, x$magnitude,, 10, 1000)      # exponential polynomial trend fitting

  eptren(x$time, x$magnitude,, 10, 1000, 1)   # exponential fourier series fitting

Run the code above in your browser using DataLab