Learn R Programming

SAPP (version 1.0.4)

simbvh: Simulation of Bi-variate Hawkes' Mutually Exciting Point Processes

Description

Perform the simulation of bi-variate Hawkes' mutually exciting point processes. The response functions are parameterized by the Laguerre-type polynomials.

Usage

simbvh(interval,axx=NULL,axy=NULL,axz=NULL,ayx=NULL,ayy=NULL,ayz=NULL, c,d,c2,d2,ptxmax,ptymax)

Arguments

interval
length of time interval in which events take place.
axx
coefficients of Laguerre polynomial (lgp) of the transfer function (= response function) from the data events x to x (trf; x --> x).
axy
coefficients of lgp (trf; y --> x).
ayx
coefficients of lgp (trf; x --> y).
ayy
coefficients of lgp (trf; y --> y).
axz
coefficients of polynomial for x data.
ayz
coefficients of polynomial for y data.
c
exponential coefficient of lgp corresponding to xx.
d
exponential coefficient of lgp corresponding to xy.
c2
exponential coefficient of lgp corresponding to yx.
d2
exponential coefficient of lgp corresponding to yy.
ptxmax
an upper bound of trend polynomial corresponding to xz.
ptymax
an upper bound of trend polynomial corresponding to yz.

Value

x
simulated data X.
y
simulated data Y.

References

Y.Ogata, K.Katsura and J.Zhuang (2006) Computer Science Monographs, No.32, TIMSAC84: STATISTICAL ANALYSIS OF SERIES OF EVENTS (TIMSAC84-SASE) VERSION 2. The Institute of Statistical Mathematics.

Y.Ogata (1981) On Lewis' simulation method for point processes. IEEE Information Theory, IT-27, pp.23-31.

Examples

Run this code
  simbvh(interval=20000,
         axx=0.01623,
         axy=0.007306,
         axz=c(0.006187, -0.00000023),
         ayz=c(0.0046786, -0.00000048, 0.2557e-10),
         c=0.4032,d=0.0219,c2=1.0,d2=1.0,
         ptxmax=0.0062,ptymax=0.08)

Run the code above in your browser using DataLab