data( SCH23390 )
# Optimal cut-off for five genes and alpha = 0.05
# is around 0.13
# First step, experimental check
#
# MDMA should change expression levels of all genes but the reference
# 1) extract the data for the Ctrl vs MDMA groups comparison
d.MDMA <- SCH23390[ which( SCH23390$Groupe %in% c( 'Ctrl', 'MDMA' ) ), ]
M.MDMA <- creer.Mp( d = d.MDMA, noms = names( d.MDMA )[ 4:8 ], log = TRUE,
f.p = student.fpc, v.X = 'MDMA' )
# 2) L'arbre associé
plot( arbre.Mp( M.MDMA, reference = 'Hprt' ),
seuil.p = c( 0.137, 0.128, 0.147 ) )
# 3) Le graphe pour le seuil optimal
# => indeed, all genes are modified by MDMA
# Fos and Fosb seems to have the same behavior
plot( grf.Mp( M.MDMA, reference = 'Hprt', p = 0.13 ) )
# Second step, experiment analysis
# Does SCH23390 modulate the MDMA effect?
# => interaction term in a two-ways analysis of variance
M.I <- creer.Mp( d = SCH23390, noms = names( SCH23390 )[ 4:8 ], log = TRUE,
f.p = anva_SC.fpc,
frm = R ~ MDMA + SCH23390 + MDMA:SCH23390, SC = 3 )
# 2) L'arbre associé
plot( arbre.Mp( M.I, reference = 'Hprt' ),
seuil.p = c( 0.137, 0.128, 0.147 ) )
# 3) Le graphe pour le seuil optimal
# => no clear detection of interaction
plot( grf.Mp( M.I, reference = 'Hprt', p = 0.13 ) )
Run the code above in your browser using DataLab