library(SAVE)
#############
# load data
#############
data(spotweldfield,package='SAVE')
data(spotweldmodel,package='SAVE')
##############
# create the SAVE object which describes the problem and
# compute the corresponding mle estimates
##############
gfsw <- SAVE(response.name="N", controllable.names=c("C", "L", "G"), calibration.names=c("t"), field.data=spotweldfield, model.data=spotweldmodel, mean.formula=as.formula("~1"), bestguess=list(t=4.0))
##############
# obtain the posterior distribution of the unknown parameters
##############
gfsw <- bayesfit(object=gfsw, prior=c(uniform("t", upper=8, lower=0.8)), n.iter=20000, n.burnin=100, n.thin=2)
#A trace plot of the chains
plot(gfsw, option="trace")
#The histogram of the posterior density of calibration parameters
plot(gfsw, option="calibration")
#The histogram of the posterior density of precision parameters
plot(gfsw, option="precision")Run the code above in your browser using DataLab