library(SAVE)
#############
# load data
#############
data(spotweldfield,package='SAVE')
data(spotweldmodel,package='SAVE')
##############
# create the SAVE object which describes the problem and
# compute the corresponding mle estimates
##############
gfsw <- SAVE(response.name="N", controllable.names=c("C", "L", "G"), calibration.names=c("t"), field.data=spotweldfield, model.data=spotweldmodel, mean.formula=as.formula("~1"), bestguess=list(t=4.0))
##############
# obtain the posterior distribution of the unknown parameters
##############
gfsw <- bayesfit(object=gfsw, prior=c(uniform("t", upper=8, lower=0.8)), n.iter=20000, n.burnin=100, n.thin=2)
#########
# bias-corrected prediction at a set of inputs
# using predictreality
##########
load <- c(4.0,5.3)
curr <- seq(from=20,to=30,length=20)
g <- c(1,2)
xnew <- as.data.frame(expand.grid(curr,load,g))
names(xnew)<-c("C","L","G")
# Obtain samples
prsw <- predictreality(object=gfsw, newdesign=xnew, tol=1.E-12)
#Plot the results:
#Represent reality and tolerance bounds:
plot(prsw, option="biascorr")
#Represent bias and tolerance bounds:
plot(prsw, option="biasfun")Run the code above in your browser using DataLab