Learn R Programming

SCE (version 1.1.2)

RFE_SCE: Recursive Feature Elimination for SCE Models

Description

Recursive Feature Elimination for SCE models to identify the most important predictors.

Usage

RFE_SCE(Training_data, Testing_data, Predictors, Predictant, Nmin, Ntree, 
        alpha = 0.05, resolution = 1000, step = 1, verbose = TRUE, 
        parallel = TRUE)

Value

RFE results with performance metrics and importance scores.

Arguments

Training_data

Training dataset

Testing_data

Testing dataset

Predictors

Character vector of predictor names

Predictant

Character vector of predictant names

Nmin

Minimum samples per node

Ntree

Number of trees

alpha

Significance level (default: 0.05)

resolution

Resolution for splitting (default: 1000)

step

Number of predictors to remove per iteration (default: 1)

verbose

Print progress (default: TRUE)

parallel

Use parallel processing (default: TRUE)

See Also

Plot_RFE, SCE, importance