Learn R Programming

SCOR (version 1.1.2)

estimate_SHUM: Smooth Approximations Of Empirical Hyper Volume Under Manifolds

Description

`SHUM` is a class of smoothed estimates of EHUM.

Usage

estimate_SHUM(beta, labels, x_mat, p = 0)

Value

Smooth approximation of the empirical Hyper-volume Under Manifolds Estimate

Arguments

beta

The parameter we measure SHUM based on.

labels

The labels of the Columns of the data matrix.

x_mat

The Data Matrix

p

p decides whether to use \(s_n(x)\) or \(\phi_n(x)\). p = 1 stands for \(\phi_n(x)\) and p = 0 stands for \(s_n(x)\)

References

  • Maiti, Raju and Li, Jialiang and Das, Priyam and Feng, Lei and Hausenloy, Derek and Chakraborty, Bibhas
    "A distribution-free smoothed combination method of biomarkers to improve diagnostic accuracy in multi-category classification"
    (available at `arXiv https://arxiv.org/abs/1904.10046).

Examples

Run this code
estimate_SHUM(rep(1, 12), colnames(AL), AL)
estimate_SHUM(rep(1, 12), colnames(AL), AL, p = 1)


estimate_SHUM(1:10 , sample(c( rep("lab1", 10), rep("lab2", 10), rep("lab3", 10))),
matrix(rnorm(300), nrow = 10))

Run the code above in your browser using DataLab