# \donttest{
if (requireNamespace("mgcv", quietly = TRUE)) {
# example using pupil data
data(pupil)
pupil_fpca <- prepare_pupil_fpca(pupil)
fosr_mod <- mgcv::bam(percent_change ~ s(seconds, k=30, bs="cr") +
s(seconds, by = use, k=30, bs = "cr") +
s(id, by = Phi1, bs="re") +
s(id, by = Phi2, bs="re") +
s(id, by = Phi3, bs="re") +
s(id, by = Phi4, bs="re"),
method = "fREML", data = pupil_fpca, discrete = TRUE)
pupil_multiplier <- SCB_functional_outcome(data = pupil_fpca, object = fosr_mod,
method = "multiplier",
outcome = "percent_change",
domain = "seconds", subset= c("use = 1"),
id = "id")
pupil_multiplier <- tibble::as_tibble(pupil_multiplier)
plot_cs(pupil_multiplier,levels = c(-18), x = pupil_multiplier$domain,
mu_hat = pupil_multiplier$mu_hat, xlab = "", ylab = "",
level_label = T, min.size = 40, palette = "Spectral",
color_level_label = "black")
}
# }
x <- rnorm(50)
epsilon <- rnorm(50,0,sqrt(2))
y <- -1 + x + epsilon
df <- data.frame(x = x, y = y)
grid <- data.frame(x = seq(-1, 1, length.out = 50))
model <- "y ~ x"
results <- SCB_linear_outcome(df_fit = df, model = model, grid_df = grid)
results <- tibble::as_tibble(results)
plot_cs(results, levels = c(0), x = seq(-1, 1, length.out = 50), mu_hat = results$Mean,
xlab = "x1", ylab = "y", level_label = T, min.size = 40, palette = "Spectral",
color_level_label = "black")
Run the code above in your browser using DataLab