ADF computes (and by default plots) different types of serial dependence diagrams.ADF(x, dtype = c("ADF", "CADF", "RPADF", "DeltaADF", "ACF"), lag.max, alpha = 0.05,
num.clas, alphaRP = 0.5, B = 99, bandwidth, delta = "Delta_1", fres = ".Perm",
fdenest = ".denest", fdiv, argacf, plot = TRUE, ...)
## S3 method for class 'SDD':
print(x, digits=3, \dots)"ADF" object (not ADF) or a univariate numeric time series object or a numeric vector."ADF"(default)"CADF""RPADF""DeltaADF""ACF"10*log10(n) where n is the number of observations.dtype="RPADF", it sets the significance level of the confidence intervals to evaluate the stability of the test-results. Default value is 0.5.dtype="DeltaADF", it sets the number of permutations used. Default value is 99 (see Bagnato L, De Capitani L, Punzo A, 2013b).dtype="DeltaADF", it sets the bandwidth used. Default value is computed with likelihood cross-validation (see Bagnato L, De Capitani L, Punzo A, 2013b).dtype="DeltaADF", it specifies the type of divergence measure used (see Bagnato L, De Capitani L, Punzo A, 2013c);
for each element in delta a different plot is produced. Possible values are:
dtype="DeltaADF", the name of the external function function(x,B) specifying the
resampling method from the raw series, where x is a time series and Bdtype="DeltaADF", the name of the external function function(x,m,ngrid,bandwidth) to use
to make univariate and bivariate density estimations where x is the time sdtype="DeltaADF" and delta="Delta_fdiv" , the name of the external function function(fi,gi,ngi) to use to compute divergence, its arguments are defined as in fTRUE (default), the specified ADF is displayed.dtype="ACF", it is a list with optional arguments for function acf().plot.SDD method, such as graphical parameters.SDD object which is a list with the following components:dtype, it may contain:
lag{a numeric vector containing the lags at which the bars of the diagrams are computed}vbar{height of the bars of the diagram}pvalue{p-values associated to the bars of the diagram}pstartransformed p-values associated to the the bars of the diagram. Ifdtype="DeltaADF"transformed p-values arevbarnvector, of lengthlag.max, containing the effective number of pairs considered for each lagcrit.valvector, of length lag.max, with the critical valuesxminvector, of lengthlag.max, containing the noncentrality parameters for each bar of the RP-ADFdtype="RPADF", it contains the lower (upper) bounds (for all bars) of the confidence intervals for
the RP-tests at level alphaRP
}xSDD-package, plot.SDD, SMI, acf# Dependence Diagrams on raw data
data("SMI")
ADF(SMI^2, dtype="ACF", main="")
ADF(SMI, main="")
ADF(SMI, dtype="RPADF", main="")
# Dependence Diagrams on residuals from a fitted model
library("tseries")
residuals <- garch(SMI, order=c(1,1))$residuals[-1]
ADF(residuals^2, dtype="ACF", main="")
ADF(residuals, dtype="RPADF", main="")Run the code above in your browser using DataLab