ADF(x, dtype = c("ADF", "CADF", "RPADF", "DeltaADF", "ACF"),
lag.max = floor(10 * log10(length(x))), alpha = 0.05,
num.clas, B = 99, bandwidth, delta = "Delta_1", fres = ".Perm",
fdenest = ".denest", fdiv, argacf, R = 1:lag.max,
p.adjust.method = p.adjust.methods, plot = TRUE,
...)
## S3 method for class 'SDD':
print(x, digits=3, \dots)"ADF" object or a univariate numeric time series object or a numeric vector."ADF"(default; see Bagnato, Punzo, Nicolis, 2012)"CADF"(see Bagnato, Punzo, Nicolis, 2012)"RPADF"10*log10(n) where n is the length of the series .dtype="ADF" or "CADF" or "RPADF", it sets the number of equifrequency classes for each of the two marginal distributions of the contingency table. If not specified, it is determined internally
using a rule ofdtype="DeltaADF", it sets the number of permutations used. Default value is 99 (see Bagnato, De Capitani, Punzo, 2013a,b).dtype="DeltaADF", it sets the bandwidth used for the Gaussian kernel density estimator. Default value is computed with likelihood cross-validation (see Bagnato, De Capitani, Punzo, 2013a,b).dtype="DeltaADF", it specifies the type of divergence measure used (see Bagnato, De Capitani, Punzo, 2013b);
for each element in delta a different plot is produced. Possible values are:
dtype="DeltaADF", the name of the external function(x,B) specifying the resampling method from the raw series, where x is a time series and B the numberdtype="DeltaADF", the name of the external function(x,m,ngrid,bandwidth) to use for univariate and bivariate density estimation, where x is the time series, mdtype="DeltaADF" and delta="Delta_fdiv" , the name of the external function(fi,gi,ngi) to use to compute divergence; its arguments are defined as in fdenestTRUE (default), the specified ADF is displayed.dtype="ACF", it is a list with optional arguments for function acf().1:lag.maxp.adjust.methods.plot.SDD method, such as graphical parameters.SDD object which is a list with the following components:dtype, it may contain:
lag, {a numeric vector containing the lags at which the bars of the diagrams are computed}vbar, {height of the bars of the diagram}pvalue, {p-values associated to the bars of the diagram}pstar, transformed p-values associated to the bars of the diagram. Ifdtype="DeltaADF"transformed p-values arevbarn, vector of lengthlag.max, containing the effective number of pairs considered for each lagcrit.val, vector, of length lag.max, with the critical valuesxminvector of lengthlag.max, containing the non-centrality parameters for each bar of the RP-ADFtype="DeltaADF", the type divergence measure used.dtype is one of: "ADF", "RPADF", or "CADF".x.p.adjust.methods.SDD-package, plot.SDD, SMI, acf# Dependence Diagrams on raw data
data("SMI")
ADF(SMI^2, dtype="ACF", main="")
ADF(SMI, main="")
ADF(SMI, dtype="RPADF", main="")
# Dependence Diagrams on residuals from a fitted model
library("tseries")
residuals <- garch(SMI, order=c(1,1))$residuals[-1]
ADF(residuals^2, dtype="ACF", main="")
ADF(residuals, dtype="RPADF", main="")Run the code above in your browser using DataLab