Generates a dynamic regression dataset where each response
y_i | p_i ~ Binomial(n, p_i) with p_i = plogis(x_i' beta_i).
The latent coefficients beta_i follow a Vector-AR(1) process.
Usage
simPoisBin(N = 1000L, n = 10L, q = 4L)
Value
A list with components:
X
N x q design matrix.
Y
Integer vector of length N, counts of successes.
beta
N x q matrix of dynamic regression coefficients.
G
q x q autoregressive multiplier matrix (diagonal).
Sig
q x q innovation covariance matrix (diagonal).
Arguments
N
Integer > 1, number of time points/individuals.
n
Integer > 0, binomial number of trials (constant across units).
q
Integer > 0, number of predictors (including intercept if desired).