Unlimited learning, half price | 50% off

Last chance! 50% off unlimited learning

Sale ends in


SDMtune (version 1.0.0)

train: Train

Description

Train a model using one of the following methods: Artificial Neural Networks, Boosted Regression Trees, Maxent, Maxnet or Random Forest.

Usage

train(method, data, folds = NULL, verbose = TRUE, ...)

Arguments

method

character or character vector. Method used to train the model, possible values are "ANN", "BRT", "Maxent", "Maxnet" or "RF", see details.

data

'>SWD object with presence and absence/background locations.

folds

list. Output of the function randomFolds or folds object created with other packages, see details, default is NULL.

verbose

logical, if TRUE shows a progress bar during cross validation, default is TRUE.

...

Arguments passed to the relative method, see details.

Value

An '>SDMmodel or '>SDMmodelCV or a list of model objects. object.

Details

  • For the ANN method possible arguments are (for more details see nnet):

    • size: integer. Number of the units in the hidden layer.

    • decay numeric. Weight decay, default is 0.

    • rang numeric. Initial random weights, default is 0.7.

    • maxit integer. Maximum number of iterations, default is 100.

  • For the BRT method possible arguments are (for more details see gbm):

    • distribution: character. Name of the distribution to use, default is "bernoulli".

    • n.trees: integer. Maximum number of tree to grow, default is 100.

    • interaction.depth: integer. Maximum depth of each tree, default is 1.

    • shrinkage: numeric. The shrinkage parameter, default is 0.1.

    • bag.fraction: numeric. Random fraction of data used in the tree expansion, default is 0.5.

  • For the RF method the model is trained as classification. Possible arguments are (for more details see randomForest):

    • mtry: integer. Number of variable randomly sampled at each split, default is floor(sqrt(number of variables)).

    • ntree: integer. Number of tree to grow, default is 500.

    • nodesize: integer. Minimum size of terminal nodes.

  • Maxent models are trained using the arguments "removeduplicates=false" and "addsamplestobackground=false". Use the function thinData to remove duplicates and the function addSamplesToBg to add presence locations to background locations. For the Maxent method, possible arguments are:

    • reg: numeric. The value of the regularization multiplier, default is 1.

    • fc: character. The value of the feature classes, possible values are combinations of "l", "q", "p", "h" and "t", default is "lqph".

    • iter: numeric. Number of iterations used by the MaxEnt algorithm, default is 500.

  • For the Maxnet method, possible arguments are (for more details see maxnet):

    • reg: numeric. The value of the regularization intensity, default is 1.

    • fc: character. The value of the feature classes, possible values are combinations of "l", "q", "p", "h" and "t", default is "lqph".

The folds argument accepts also objects created with other packages: ENMeval or blockCV. In this case the function converts internally the folds into a format valid for SDMtune.

When multiple methods are given as method argument, the function returns a named list of model object, with the name corresponding to the used method, see examples.

References

Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0.

Brandon Greenwell, Bradley Boehmke, Jay Cunningham and GBM Developers (2019). gbm: Generalized Boosted Regression Models. https://CRAN.R-project.org/package=gbm.

A. Liaw and M. Wiener (2002). Classification and Regression by randomForest. R News 2(3), 18--22.

Hijmans, Robert J., Steven Phillips, John Leathwick, and Jane Elith. 2017. dismo: Species Distribution Modeling. https://cran.r-project.org/package=dismo.

Steven Phillips (2017). maxnet: Fitting 'Maxent' Species Distribution Models with 'glmnet'. https://CRAN.R-project.org/package=maxnet.

Muscarella, R., Galante, P.J., Soley-Guardia, M., Boria, R.A., Kass, J., Uriarte, M. and R.P. Anderson (2014). ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for ecological niche models. Methods in Ecology and Evolution.

Roozbeh Valavi, Jane Elith, Jos<U+00E9> Lahoz-Monfort and Gurutzeta Guillera-Arroita (2018). blockCV: Spatial and environmental blocking for k-fold cross-validation. https://github.com/rvalavi/blockCV.

See Also

randomFolds