# NOT RUN {
# Acquire environmental variables
files <- list.files(path = file.path(system.file(package = "dismo"), "ex"),
pattern = "grd", full.names = TRUE)
predictors <- raster::stack(files)
# Prepare background locations
bg_coords <- dismo::randomPoints(predictors, 9000)
nrow(bg_coords)
# Thin the locations
# There are probably few coordinates that have NAs for some predictors, the
# function will remove these coordinates. Note that the finction expects to
# the coordinates in two column named "x" and "y"
colnames(bg_coords)
thinned_bg <- thinData(bg_coords, env = predictors)
nrow(thinned_bg)
# Here we double the coordinates and run the function again
thinned_bg <- thinData(rbind(bg_coords, bg_coords), env = predictors)
nrow(thinned_bg)
# In case of a dataframe containing more than two columns (e.g. a dataframe
# with the coordinates plus an additional column with the age of the species)
# and custom column names, use the function in this way
age <- sample(c(1, 2), size = nrow(bg_coords), replace = TRUE)
data <- cbind(age, bg_coords)
colnames(data) <- c("age", "X", "Y")
thinned_bg <- thinData(data, env = predictors, x = "X", y = "Y")
head(data)
# }
Run the code above in your browser using DataLab