# Acquire environmental variables
files <- list.files(path = file.path(system.file(package = "dismo"), "ex"),
                    pattern = "grd",
                    full.names = TRUE)
predictors <- terra::rast(files)
# Prepare presence and background locations
p_coords <- virtualSp$presence
bg_coords <- virtualSp$background
# Create SWD object
data <- prepareSWD(species = "Virtual species",
                   p = p_coords,
                   a = bg_coords,
                   env = predictors,
                   categorical = "biome")
# Split presence locations in training (80%) and testing (20%) datasets
datasets <- trainValTest(data,
                         test = 0.2,
                         only_presence = TRUE)
train <- datasets[[1]]
test <- datasets[[2]]
# Train a model
model <- train(method = "Maxnet",
               data = train,
               fc = "lq")
# Execute the Jackknife test for all the environmental variables using the
# metric AUC
jk <- doJk(model,
           metric = "auc",
           test = test)
# Plot Jackknife test result for training
plotJk(jk,
       type = "train",
       ref = auc(model))
#' # Plot Jackknife test result for testing
plotJk(jk,
       type = "test",
       ref = auc(model, test = test))
Run the code above in your browser using DataLab