# Acquire environmental variables
files <- list.files(path = file.path(system.file(package = "dismo"), "ex"),
                    pattern = "grd",
                    full.names = TRUE)
predictors <- terra::rast(files)
# Prepare presence and background locations
p_coords <- virtualSp$presence
bg_coords <- virtualSp$background
# Create SWD object
data <- prepareSWD(species = "Virtual species",
                   p = p_coords,
                   a = bg_coords,
                   env = predictors,
                   categorical = "biome")
# Split presence locations in training (80%) and testing (20%) datasets
datasets <- trainValTest(data,
                         test = 0.2,
                         only_presence = TRUE)
train <- datasets[[1]]
test <- datasets[[2]]
# Train a model
model <- train(method = "Maxnet",
               data = train,
               fc = "l")
# Make cloglog prediction for the test dataset
predict(model,
        data = test,
        type = "cloglog")
# Make logistic prediction for the whole study area
predict(model,
        data = predictors,
        type = "logistic")
if (FALSE) {
# Make logistic prediction for the whole study area and save it in a file.
# Note that the filename must include the extension. The function saves the
# file in your working directory
predict(model,
        data = predictors,
        type = "logistic",
        filename = "my_map.tif")}
Run the code above in your browser using DataLab