if (FALSE) {
#load SEMdata package for ALS data with 17K genes:
#devtools::install_github("fernandoPalluzzi/SEMdata")
#library(SEMdata)
# Nonparanormal(npn) transformation
data.npn<- transformData(alsData$exprs)$data
dim(data.npn)
# Selection of FTD-ALS pathways from KEGG pathways
paths.name <- c("MAPK signaling pathway",
"Protein processing in endoplasmic reticulum",
"Endocytosis",
"Wnt signaling pathway",
"Neurotrophin signaling pathway",
"Amyotrophic lateral sclerosis")
j <- which(names(kegg.pathways) %in% paths.name)
# Neuro interactome (max component)
gU <- Reduce(igraph::union, kegg.pathways[j])
gU <- properties(gU)[[1]]
#summary(gU)
# Modules with ALS perturbed edges using fast gready clustering
gD<- SEMdci(gU, data.npn, alsData$group, type="fgc")
summary(gD)
gcD<- properties(gD)
par(mfrow=c(2,2), mar=rep(2,4))
gplot(gcD[[1]], l="fdp", main="max component")
gplot(gcD[[2]], l="fdp", main="2nd component")
gplot(gcD[[3]], l="fdp", main="3rd component")
gplot(gcD[[4]], l="fdp", main="4th component")
}
Run the code above in your browser using DataLab