Learn R Programming

SFDesign (version 0.1.3)

maxpro.crit: Maximum projection (MaxPro) criterion

Description

This function calculates the MaxPro criterion of a design.

Usage

maxpro.crit(design, delta = 0)

Value

the MaxPro criterion of the design.

Arguments

design

the design matrix.

delta

a small value added to the denominator of the maximum projection criterion. By default it is set as zero.

Details

maxpro.crit calculates the MaxPro criterion of a design. The MaxPro criterion for a design \(D=[\bm x_1, \dots, \bm x_n]^T\) is defined as $$\left\{\frac{1}{{n\choose 2}}\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\frac{1}{\prod_{l=1}^p[(x_{il}-x_{jl})^2+ \delta]}\right\}^{1/p},$$ where \(p\) is the dimension of the design (Joseph, V. R., Gul, E., & Ba, S. 2015).

References

Joseph, V. R., Gul, E., & Ba, S. (2015). Maximum projection designs for computer experiments. Biometrika, 102(2), 371-380.

Examples

Run this code
n = 20
p = 3
D = randomLHD(n, p)
maxpro.crit(D)

Run the code above in your browser using DataLab