Learn R Programming

SFPL (version 1.0.0)

data_sim: Rank data simulation

Description

Simulates (partial) rank data for multiple groups together with object variables.

Usage

data_sim(m, M, n, p, K, delta, eta)

Value

y

A list consisting of \(K\) matrices with each matrix containing (partial) rankings across \(n\) observations for group \(k\).

x

A \(M \times p\) matrix containing the values for the \(p\) objects variables across the \(M\) objects.

beta

A \(p \times K\) matrix containing the true value of \(\beta\), which was used to generate \(y\).

Arguments

m

Length of the partial ranking for each observation.

M

Total number of objects.

n

Number of observations (rankers) per group.

p

Number of object variables.

K

Number of groups.

delta

Approximate fraction of different coefficients across the \(\beta^{(k)}\).

eta

Approximate fraction of sparse coefficients in \(\beta^{(k)}\) for all \(k\).

Author

Sjoerd Hermes
Maintainer: Sjoerd Hermes sjoerd.hermes@wur.nl

References

1. Hermes, S., van Heerwaarden, J., and Behrouzi, P. (2024). Joint Learning from Heterogeneous Rank Data. arXiv preprint, arXiv:2407.10846

Examples

Run this code
data_sim(3, 10, 50, 5, 2, 0.25, 0.25)

Run the code above in your browser using DataLab